Site icon Health Horizon

Genetic engineering and the eye

Genetic engineering and the eye
  • Hoermann A, Habtewold T, Selvaraj P, Del Corsano G, Capriotti P, Inghilterra MG, et al. Gene drive mosquitoes can aid malaria elimination by retarding Plasmodium sporogonic development. Sci Adv. 2022;8:eabo1733.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang GH, Gamez S, Raban RR, Marshall JM, Alphey L, Li M, et al. Combating mosquito-borne diseases using genetic control technologies. Nat Commun. 2021;12:4388.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ali Q, Yu C, Hussain A, Ali M, Ahmar S, Sohail MA, et al. Genome engineering technology for durable disease resistance: recent progress and future outlooks for sustainable agriculture. Front Plant Sci. 2022;13:860281.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Maynard LH, Humbert O, Peterson CW, Kiem HP. Genome editing in large animal models. Mol Ther. 2021;29:3140–52.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Arabi F, Mansouri V, Ahmadbeigi N. Gene therapy clinical trials, where do we go? An overview. Biomed Pharmacother. 2022;153:113324.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Russell S, Bennett J, Wellman JA, Chung DC, Yu ZF, Tillman A, et al. Efficacy and safety of voretigene neparvovec (AAV2-hRPE65v2) in patients with RPE65-mediated inherited retinal dystrophy: a randomised, controlled, open-label, phase 3 trial. Lancet. 2017;390:849–60.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Choi EH, Suh S, Sears AE, Holubowicz R, Kedhar SR, Browne AW, et al. Genome editing in the treatment of ocular diseases. Exp Mol Med. 2023;55:1678–90.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ghoraba HH, Akhavanrezayat A, Karaca I, Yavari N, Lajevardi S, Hwang J, et al. Ocular gene therapy: a literature review with special focus on immune and inflammatory responses. Clin Ophthalmol. 2022;16:1753–71.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kovacs KD, Ciulla TA, Kiss S. Advancements in ocular gene therapy delivery: vectors and subretinal, intravitreal, and suprachoroidal techniques. Expert Opin Biol Ther. 2022;22:1193–208.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ratican SE, Osborne A, Martin KR. Progress in gene therapy to prevent retinal ganglion cell loss in glaucoma and leber’s hereditary optic neuropathy. Neural Plast. 2018;2018:7108948.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sulak R, Liu X, Smedowski A. The concept of gene therapy for glaucoma: the dream that has not come true yet. Neural Regen Res. 2024;19:92–9.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lanigan TM, Kopera HC, Saunders TL. Principles of genetic engineering. Genes. 2020;11:291.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Somia N, Verma IM. Gene therapy: trials and tribulations. Nat Rev Genet. 2000;1:91–9.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Woods NB, Bottero V, Schmidt M, von Kalle C, Verma IM. Gene therapy: therapeutic gene causing lymphoma. Nature. 2006;440:1123.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Howe SJ, Mansour MR, Schwarzwaelder K, Bartholomae C, Hubank M, Kempski H, et al. Insertional mutagenesis combined with acquired somatic mutations causes leukemogenesis following gene therapy of SCID-X1 patients. J Clin Invest. 2008;118:3143–50.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dyer O. Researcher who edited babies’ genome retreats from view as criticism mounts. BMJ. 2018;363:k5113.

    Article 
    PubMed 

    Google Scholar 

  • Lander ES, Baylis F, Zhang F, Charpentier E, Berg P, Bourgain C, et al. Adopt a moratorium on heritable genome editing. Nature. 2019;567:165–8.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Urnov FD, Rebar EJ, Holmes MC, Zhang HS, Gregory PD. Genome editing with engineered zinc finger nucleases. Nat Rev Genet. 2010;11:636–46.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Joung JK, Sander JD. TALENs: a widely applicable technology for targeted genome editing. Nat Rev Mol Cell Biol. 2013;14:49–55.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sander JD, Joung JK. CRISPR-Cas systems for editing, regulating and targeting genomes. Nat Biotechnol. 2014;32:347–55.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kocak DD, Josephs EA, Bhandarkar V, Adkar SS, Kwon JB, Gersbach CA. Increasing the specificity of CRISPR systems with engineered RNA secondary structures. Nat Biotechnol. 2019;37:657–66.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ceccaldi R, Rondinelli B, D’Andrea AD. Repair pathway choices and consequences at the double-strand break. Trends Cell Biol. 2016;26:52–64.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lieber MR. The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annu Rev Biochem. 2010;79:181–211.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Heyer WD, Ehmsen KT, Liu J. Regulation of homologous recombination in eukaryotes. Annu Rev Genet. 2010;44:113–39.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Komor AC, Kim YB, Packer MS, Zuris JA, Liu DR. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature. 2016;533:420–4.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rees HA, Liu DR. Base editing: precision chemistry on the genome and transcriptome of living cells. Nat Rev Genet. 2018;19:770–88.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Anzalone AV, Randolph PB, Davis JR, Sousa AA, Koblan LW, Levy JM, et al. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature. 2019;576:149–57.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science. 2012;337:816–21.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Scholefield J, Harrison PT. Prime editing – an update on the field. Gene Ther. 2021;28:396–401.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Strecker J, Ladha A, Gardner Z, Schmid-Burgk JL, Makarova KS, Koonin EV, et al. RNA-guided DNA insertion with CRISPR-associated transposases. Science. 2019;365:48–53.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tou CJ, Orr B, Kleinstiver BP. Precise cut-and-paste DNA insertion using engineered type V-K CRISPR-associated transposases. Nat Biotechnol. 2023;41:968–79.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Anzalone AV, Koblan LW, Liu DR. Genome editing with CRISPR-Cas nucleases, base editors, transposases and prime editors. Nat Biotechnol. 2020;38:824–44.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126:663–76.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Davis RL, Weintraub H, Lassar AB. Expression of a single transfected cDNA converts fibroblasts to myoblasts. Cell. 1987;51:987–1000.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wang H, Yang Y, Liu J, Qian L. Direct cell reprogramming: approaches, mechanisms and progress. Nat Rev Mol Cell Biol. 2021;22:410–24.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gascon S, Masserdotti G, Russo GL, Gotz M. Direct neuronal reprogramming: achievements, hurdles, and new roads to success. Cell Stem Cell. 2017;21:18–34.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Yao K, Qiu S, Wang YV, Park SJH, Mohns EJ, Mehta B, et al. Restoration of vision after de novo genesis of rod photoreceptors in mammalian retinas. Nature. 2018;560:484–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Editorial. Method of the Year 2010. Nat Methods 8, 1 (2011). Nat Methods. 2010;8.

  • News S. Insights of the decade. Stepping away from the trees for a look at the forest. Introduction. Science. 2010;330:1612–3.

    Article 

    Google Scholar 

  • Sahel JA, Boulanger-Scemama E, Pagot C, Arleo A, Galluppi F, Martel JN, et al. Partial recovery of visual function in a blind patient after optogenetic therapy. Nat Med. 2021;27:1223–9.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bulcha JT, Wang Y, Ma H, Tai PWL, Gao G. Viral vector platforms within the gene therapy landscape. Signal Transduct Target Ther. 2021;6:53.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zu H, Gao D. Non-viral vectors in gene therapy: recent development, challenges, and prospects. AAPS J. 2021;23:78.

    Article 
    PubMed 

    Google Scholar 

  • Lee CS, Bishop ES, Zhang R, Yu X, Farina EM, Yan S, et al. Adenovirus-mediated gene delivery: potential applications for gene and cell-based therapies in the new era of personalized medicine. Genes Dis. 2017;4:43–63.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Muruve DA. The innate immune response to adenovirus vectors. Hum Gene Ther. 2004;15:1157–66.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Peng Z. Current status of gendicine in China: recombinant human Ad-p53 agent for treatment of cancers. Hum Gene Ther. 2005;16:1016–27.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Atchison RW, Casto BC, Hammon WM. Adenovirus-associated defective virus particles. Science. 1965;149:754–6.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Flotte T, Carter B, Conrad C, Guggino W, Reynolds T, Rosenstein B, et al. A phase I study of an adeno-associated virus-CFTR gene vector in adult CF patients with mild lung disease. Hum Gene Ther. 1996;7:1145–59.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zaiss AK, Liu Q, Bowen GP, Wong NC, Bartlett JS, Muruve DA. Differential activation of innate immune responses by adenovirus and adeno-associated virus vectors. J Virol. 2002;76:4580–90.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pillay S, Zou W, Cheng F, Puschnik AS, Meyer NL, Ganaie SS, et al. Adeno-associated Virus (AAV) Serotypes Have Distinctive Interactions with Domains of the Cellular AAV Receptor. J Virol. 2017;91:e00391–17.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hulliger EC, Hostettler SM, Kleinlogel S. Empowering retinal gene therapy with a specific promoter for human rod and cone ON-bipolar cells. Mol Ther Methods Clin Dev. 2020;17:505–19.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nieuwenhuis B, Laperrousaz E, Tribble JR, Verhaagen J, Fawcett JW, Martin KR, et al. Improving adeno-associated viral (AAV) vector-mediated transgene expression in retinal ganglion cells: comparison of five promoters. Gene Ther. 2023;30:503–19.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kiss S, Oresic Bender K, Grishanin RN, Hanna KM, Nieves JD, Sharma P, et al. Long-term safety evaluation of continuous intraocular delivery of aflibercept by the intravitreal gene therapy candidate ADVM-022 in nonhuman primates. Transl Vis Sci Technol. 2021;10:34.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • de Smet MD, Lynch JL, Dejneka NS, Keane M, Khan IJ. A subretinal cell delivery method via suprachoroidal access in minipigs: safety and surgical outcomes. Invest Ophthalmol Vis Sci. 2018;59:311–20.

    Article 
    PubMed 

    Google Scholar 

  • Yiu G, Chung SH, Mollhoff IN, Nguyen UT, Thomasy SM, Yoo J, et al. Suprachoroidal and subretinal injections of AAV using transscleral microneedles for retinal gene delivery in nonhuman primates. Mol Ther Methods Clin Dev. 2020;16:179–91.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shen J, Kim J, Tzeng SY, Ding K, Hafiz Z, Long D, et al. Suprachoroidal gene transfer with nonviral nanoparticles. Sci Adv. 2020;6:eaba1606.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yin D, Ling S, Wang D, Dai Y, Jiang H, Zhou X, et al. Targeting herpes simplex virus with CRISPR-Cas9 cures herpetic stromal keratitis in mice. Nat Biotechnol. 2021;39:567–77.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Uehara H, Zhang X, Pereira F, Narendran S, Choi S, Bhuvanagiri S, et al. Start codon disruption with CRISPR/Cas9 prevents murine Fuchs’ endothelial corneal dystrophy. Elife. 2021;10:e55637.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Heath Jeffery RC, Mukhtar SA, McAllister IL, Morgan WH, Mackey DA, Chen FK. Inherited retinal diseases are the most common cause of blindness in the working-age population in Australia. Ophthalmic Genet. 2021;42:431–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liew G, Michaelides M, Bunce C. A comparison of the causes of blindness certifications in England and Wales in working age adults (16-64 years), 1999–2000 with 2009–2010. BMJ Open. 2014;4:e004015.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Schofield D, Kraindler J, Tan O, Shrestha RN, West S, Hart N, et al. The health care and societal costs of inherited retinal diseases in Australia: a microsimulation modelling study. Med J Aust. 2023;219:70–6.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Schneider N, Sundaresan Y, Gopalakrishnan P, Beryozkin A, Hanany M, Levanon EY, et al. Inherited retinal diseases: Linking genes, disease-causing variants, and relevant therapeutic modalities. Prog Retin Eye Res. 2022;89:101029.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kumaran N, Moore AT, Weleber RG, Michaelides M. Leber congenital amaurosis/early-onset severe retinal dystrophy: clinical features, molecular genetics and therapeutic interventions. Br J Ophthalmol. 2017;101:1147–54.

    Article 
    PubMed 

    Google Scholar 

  • den Hollander AI, Roepman R, Koenekoop RK, Cremers FP. Leber congenital amaurosis: genes, proteins and disease mechanisms. Prog Retin Eye Res. 2008;27:391–419.

    Article 

    Google Scholar 

  • Jo DH, Song DW, Cho CS, Kim UG, Lee KJ, Lee K, et al. CRISPR-Cas9-mediated therapeutic editing of Rpe65 ameliorates the disease phenotypes in a mouse model of Leber congenital amaurosis. Sci Adv. 2019;5:eaax1210.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Suh S, Choi EH, Leinonen H, Foik AT, Newby GA, Yeh WH, et al. Restoration of visual function in adult mice with an inherited retinal disease via adenine base editing. Nat Biomed Eng. 2021;5:169–78.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Jang H, Jo DH, Cho CS, Shin JH, Seo JH, Yu G, et al. Application of prime editing to the correction of mutations and phenotypes in adult mice with liver and eye diseases. Nat Biomed Eng. 2022;6:181–94.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • She K, Liu Y, Zhao Q, Jin X, Yang Y, Su J, et al. Dual-AAV split prime editor corrects the mutation and phenotype in mice with inherited retinal degeneration. Signal Transduct Target Ther. 2023;8:57.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Verbakel SK, van Huet RAC, Boon CJF, den Hollander AI, Collin RWJ, Klaver CCW, et al. Non-syndromic retinitis pigmentosa. Prog Retin Eye Res. 2018;66:157–86.

    Article 
    PubMed 

    Google Scholar 

  • Wilson JH, Wensel TG. The nature of dominant mutations of rhodopsin and implications for gene therapy. Mol Neurobiol. 2003;28:149–58.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bakondi B, Lv W, Lu B, Jones MK, Tsai Y, Kim KJ, et al. In vivo CRISPR/Cas9 gene editing corrects retinal dystrophy in the S334ter-3 rat model of autosomal dominant retinitis pigmentosa. Mol Ther. 2016;24:556–63.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Qin H, Zhang W, Zhang S, Feng Y, Xu W, Qi J, et al. Vision rescue via unconstrained in vivo prime editing in degenerating neural retinas. J Exp Med. 2023;220:e20220776.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tanna P, Strauss RW, Fujinami K, Michaelides M. Stargardt disease: clinical features, molecular genetics, animal models and therapeutic options. Br J Ophthalmol. 2017;101:25–30.

    Article 
    PubMed 

    Google Scholar 

  • Stenson PD, Mort M, Ball EV, Chapman M, Evans K, Azevedo L, et al. The Human Gene Mutation Database (HGMD((R))): optimizing its use in a clinical diagnostic or research setting. Hum Genet. 2020;139:1197–207.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Trapani I, Toriello E, de Simone S, Colella P, Iodice C, Polishchuk EV, et al. Improved dual AAV vectors with reduced expression of truncated proteins are safe and effective in the retina of a mouse model of Stargardt disease. Hum Mol Genet. 2015;24:6811–25.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Siles L, Ruiz-Nogales S, Navines-Ferrer A, Mendez-Vendrell P, Pomares E. Efficient correction of ABCA4 variants by CRISPR-Cas9 in hiPSCs derived from Stargardt disease patients. Mol Ther Nucleic Acids. 2023;32:64–79.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Khanani AM, Thomas MJ, Aziz AA, Weng CY, Danzig CJ, Yiu G, et al. Review of gene therapies for age-related macular degeneration. Eye. 2022;36:303–11.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ciulla T, Pollack JS, Williams DF. Visual acuity outcomes and anti-VEGF therapy intensity in macular oedema due to retinal vein occlusion: a real-world analysis of 15,613 patient eyes. Br J Ophthalmol. 2021;105:1696–704.

    Article 
    PubMed 

    Google Scholar 

  • Ciulla TA, Hussain RM, Pollack JS, Williams DF. Visual acuity outcomes and anti-vascular endothelial growth factor therapy intensity in neovascular age-related macular degeneration patients: a real-world analysis of 49 485 eyes. Ophthalmol Retin. 2020;4:19–30.

    Article 

    Google Scholar 

  • Ciulla TA, Pollack JS, Williams DF. Visual acuity outcomes and anti-VEGF therapy intensity in diabetic macular oedema: a real-world analysis of 28 658 patient eyes. Br J Ophthalmol. 2021;105:216–21.

    Article 
    PubMed 

    Google Scholar 

  • A Randomized, Partially Masked, Controlled, Phase 2b/3 Clinical Study to Evaluate the Efficacy and Safety of RGX-314 Gene Therapy in Participants With nAMD (ATMOSPHERE) ClinicalTrials.gov identifier: NCT04704921. Updated 2023-05-22. Accessed 1st Decmber 2023 https://clinicaltrials.gov/study/NCT04704921?term=ATMOSPHERE&rank=1.

  • A Phase 2, Randomized, Dose-escalation, Ranibizumab-controlled Study to Evaluate the Efficacy, Safety, and Tolerability of RGX-314 Gene Therapy Delivered Via One or Two Suprachoroidal Space (SCS) Injections in Participants With Neovascular Age-Related Macular Degeneration (nAMD) (AAVIATE) ClinicalTrials.gov identifier: NCT04514653. Updated 2023-05-22. Accessed 1st December 2023 https://clinicaltrials.gov/study/NCT04704921?term=ATMOSPHERE&rank=1.

  • A Phase 2, Randomized, Dose-escalation, Observation-controlled Study to Evaluate the Efficacy, Safety, and Tolerability of RGX-314 Gene Therapy Delivered Via a Single Suprachoroidal Space (SCS) Injections in Participants With Diabetic Retinopathy (DR) Without Center Involved-Diabetic Macular Edema (CI-DME)(ALTITUDE) ClinicalTrials.gov identifier: NCT04567550. Updated 2023-05-22. Accessed 1st December 2023 https://clinicaltrials.gov/study/NCT04567550?term=ALTITUDE&intr=diabetic%20retinopathy&rank=1

  • A Phase I/IIa (Phase 1/Phase 2a), Open-label, Multiple-cohort, Dose-escalation Study to Evaluate the Safety and Tolerability of Gene Therapy With RGX-314 in Subjects With Neovascular AMD (nAMD) ClinicalTrials.gov identifier: NCT03066258. Updated 2023-05-16. Accessed 1st December 2023 https://clinicaltrials.gov/study/NCT03066258?term=NCT03066258&rank=1.

  • Busbee B, Boyer DS, Khanani AM, Wykoff CC, Pieramici DJ, Regillo C, et al. Phase 1 study of intravitreal gene therapy with ADVM-022 for neovascular AMD (OPTIC TRAIL). Invest Ophth Vis Sci. 2021;62:352.

  • Bahadorani S, Singer M. Recent advances in the management and understanding of macular degeneration. F1000Res. 2017;6:519.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dreismann AK, McClements ME, Barnard AR, Orhan E, Hughes JP, Lachmann PJ, et al. Functional expression of complement factor I following AAV-mediated gene delivery in the retina of mice and human cells. Gene Ther. 2021;28:265–76.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • FOCUS: An Open Label First in Human Phase I/II Multicentre Study to Evaluate the Safety, Dose Response and Efficacy of GT005 Administered as a Single Subretinal Injection in Subjects With Macular Atrophy Due to AMD ClinicalTrials.gov identifier: NCT03846193. Updated 2023-12-21. Accessed 21st December 2023 https://clinicaltrials.gov/study/NCT03846193?term=NCT03846193&rank=1

  • EXPLORE: A Phase II, Outcomes Assessor-masked, Multicentre, Randomised Study to Evaluate the Safety and Efficacy of Two Doses of GT005 Administered as a Single Subretinal Injection in Subjects With Geographic Atrophy Secondary to Age-related Macular Degeneration ClinicalTrials.gov identifier: NCT04437368. Updated 2023-12-21. Accessed 21st December 2023 https://clinicaltrials.gov/study/NCT04437368?cond=NCT04437368&term=NCT04437368&rank=1.

  • HORIZON: A Phase II, Open-label, Outcomes-assessor Masked, Multicentre, Randomised, Controlled Study to Evaluate the Safety and Efficacy of Two Doses of GT005 Administered as a Single Subretinal Injection in Subjects With Geographic Atrophy Secondary to Dry Age-related Macular Degeneration ClinicalTrials.gov identifier: NCT04566445. Updated 2023-12-19. Accessed 21st December 2023 https://clinicaltrials.gov/study/NCT04437368?cond=NCT04437368&term=NCT04437368&rank=1.

  • Holz F Phase 1 Study of JNJ-81201887 Gene Therapy in Geographic Atrophy (GA) Due to Age-related Macular Degeneration (AMD). EURETINA; Amsterdam 2023.

  • Lad EM, Chao DL, Pepio A, Zhang W, Capuano G, Rogers A, et al. Pooled safety analysis of a single intravitreal injection of JNJ-1887 (gene therapy, AAVCAGsCD59) in patients with age-related macular degeneration (AMD). Invest Ophth Vis Sci. 2023;64.

  • A Study to Evaluate Intravitreal JNJ-81201887 (AAVCAGsCD59) Compared to Sham Procedure for the Treatment of Geographic Atrophy (GA) Secondary to Age-related Macular Degeneration (AMD) ClinicalTrials.gov identifier: NCT05811351. Updated 2023-12-19. Accessed https://clinicaltrials.gov/study/NCT04437368?cond=NCT04437368&term=NCT04437368&rank=1.

  • Tham YC, Li X, Wong TY, Quigley HA, Aung T, Cheng CY. Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis. Ophthalmology. 2014;121:2081–90.

    Article 
    PubMed 

    Google Scholar 

  • Han X, Gharahkhani P, Hamel AR, Ong JS, Renteria ME, Mehta P, et al. Large-scale multitrait genome-wide association analyses identify hundreds of glaucoma risk loci. Nat Genet. 2023;55:1116–25.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Maihofner C, Schlotzer-Schrehardt U, Guhring H, Zeilhofer HU, Naumann GO, Pahl A, et al. Expression of cyclooxygenase-1 and -2 in normal and glaucomatous human eyes. Invest Ophthalmol Vis Sci. 2001;42:2616–24.

    CAS 
    PubMed 

    Google Scholar 

  • Chern KJ, Nettesheim ER, Reid CA, Li NW, Marcoe GJ, Lipinski DM. Prostaglandin-based rAAV-mediated glaucoma gene therapy in Brown Norway rats. Commun Biol. 2022;5:1169.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wu J, Bell OH, Copland DA, Young A, Pooley JR, Maswood R, et al. Gene therapy for glaucoma by ciliary body aquaporin 1 disruption using CRISPR-Cas9. Mol Ther. 2020;28:820–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Martinez T, Gonzalez MV, Roehl I, Wright N, Paneda C, Jimenez AI. In vitro and in vivo efficacy of SYL040012, a novel siRNA compound for treatment of glaucoma. Mol Ther. 2014;22:81–91.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kim MH, Lim SH. Matrix metalloproteinases and glaucoma. Biomolecules. 2022;12:1368.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • O’Callaghan J, Crosbie DE, Cassidy PS, Sherwood JM, Flugel-Koch C, Lutjen-Drecoll E, et al. Therapeutic potential of AAV-mediated MMP-3 secretion from corneal endothelium in treating glaucoma. Hum Mol Genet. 2017;26:1230–46.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gerometta R, Spiga MG, Borras T, Candia OA. Treatment of sheep steroid-induced ocular hypertension with a glucocorticoid-inducible MMP1 gene therapy virus. Invest Ophthalmol Vis Sci. 2010;51:3042–8.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Stone EM, Fingert JH, Alward WL, Nguyen TD, Polansky JR, Sunden SL, et al. Identification of a gene that causes primary open angle glaucoma. Science. 1997;275:668–70.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Fingert JH, Stone EM, Sheffield VC, Alward WL. Myocilin glaucoma. Surv Ophthalmol. 2002;47:547–61.

    Article 
    PubMed 

    Google Scholar 

  • Jain A, Zode G, Kasetti RB, Ran FA, Yan W, Sharma TP, et al. CRISPR-Cas9-based treatment of myocilin-associated glaucoma. Proc Natl Acad Sci USA. 2017;114:11199–204.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ozcan AA, Ozdemir N, Canataroglu A. The aqueous levels of TGF-beta2 in patients with glaucoma. Int Ophthalmol. 2004;25:19–22.

    Article 
    PubMed 

    Google Scholar 

  • Pena JD, Taylor AW, Ricard CS, Vidal I, Hernandez MR. Transforming growth factor beta isoforms in human optic nerve heads. Br J Ophthalmol. 1999;83:209–18.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rayana NP, Sugali CK, Dai J, Peng M, Liu S, Zhang Y, et al. Using CRISPR interference as a therapeutic approach to treat TGFbeta2-induced ocular hypertension and glaucoma. Invest Ophthalmol Vis Sci. 2021;62:7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gupta V, You Y, Li J, Gupta V, Golzan M, Klistorner A, et al. BDNF impairment is associated with age-related changes in the inner retina and exacerbates experimental glaucoma. Biochim Biophys Acta. 2014;1842:1567–78.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Pease ME, McKinnon SJ, Quigley HA, Kerrigan-Baumrind LA, Zack DJ. Obstructed axonal transport of BDNF and its receptor TrkB in experimental glaucoma. Invest Ophthalmol Vis Sci. 2000;41:764–74.

    CAS 
    PubMed 

    Google Scholar 

  • Chen H, Weber AJ. BDNF enhances retinal ganglion cell survival in cats with optic nerve damage. Invest Ophthalmol Vis Sci. 2001;42:966–74.

    CAS 
    PubMed 

    Google Scholar 

  • Domenici L, Origlia N, Falsini B, Cerri E, Barloscio D, Fabiani C, et al. Rescue of retinal function by BDNF in a mouse model of glaucoma. PLoS ONE. 2014;9:e115579.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Martin KR, Quigley HA, Zack DJ, Levkovitch-Verbin H, Kielczewski J, Valenta D, et al. Gene therapy with brain-derived neurotrophic factor as a protection: retinal ganglion cells in a rat glaucoma model. Invest Ophthalmol Vis Sci. 2003;44:4357–65.

    Article 
    PubMed 

    Google Scholar 

  • Di Polo A, Aigner LJ, Dunn RJ, Bray GM, Aguayo AJ. Prolonged delivery of brain-derived neurotrophic factor by adenovirus-infected Muller cells temporarily rescues injured retinal ganglion cells. Proc Natl Acad Sci USA. 1998;95:3978–83.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Frank L, Ventimiglia R, Anderson K, Lindsay RM, Rudge JS. BDNF down-regulates neurotrophin responsiveness, TrkB protein and TrkB mRNA levels in cultured rat hippocampal neurons. Eur J Neurosci. 1996;8:1220–30.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Osborne A, Khatib TZ, Songra L, Barber AC, Hall K, Kong GYX, et al. Neuroprotection of retinal ganglion cells by a novel gene therapy construct that achieves sustained enhancement of brain-derived neurotrophic factor/tropomyosin-related kinase receptor-B signaling. Cell Death Dis. 2018;9:1007.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Khatib TZ, Osborne A, Yang S, Ali Z, Jia W, Manyakin I, et al. Receptor-ligand supplementation via a self-cleaving 2A peptide-based gene therapy promotes CNS axonal transport with functional recovery. Sci Adv. 2021;7:eabd2590.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nishijima E, Honda S, Kitamura Y, Namekata K, Kimura A, Guo X, et al. Vision protection and robust axon regeneration in glaucoma models by membrane-associated Trk receptors. Mol Ther. 2023;31:810–24.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bradke F, Marin O. Editorial overview: development and regeneration: nervous system development and regeneration. Curr Opin Neurobiol. 2014;27:iv–vi.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Petrova V, Pearson CS, Ching J, Tribble JR, Solano AG, Yang Y, et al. Protrudin functions from the endoplasmic reticulum to support axon regeneration in the adult CNS. Nat Commun. 2020;11:5614.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li B, Tan W, Wang Z, Zhou H, Zou J, Li Y, et al. Progress and prospects of gene therapy in ophthalmology from 2000 to 2022: A bibliometric analysis. Heliyon. 2023;9:e18228.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • link

    Exit mobile version