Gene editing for collagen disorders: current advances and future perspectives

0
Gene editing for collagen disorders: current advances and future perspectives
  • Liu D, Nikoo M, Boran G, Zhou P, Regenstein J Collagen and gelatin. Annu Rev Food Sci Technol. 2015;6:527–57.

  • Tarnutzer K, Siva Sankar D, Dengjel J, Ewald CY. Collagen constitutes about 12% in females and 17% in males of the total protein in mice. Sci Rep. 2023;13:4490.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Fidler AL, Boudko SP, Rokas A, Hudson BG. The triple helix of collagens – an ancient protein structure that enabled animal multicellularity and tissue evolution. J Cell Sci. 2018;131:jcs203950.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gjaltema RAF, Bank RA. Molecular insights into prolyl and lysyl hydroxylation of fibrillar collagens in health and disease. Crit Rev Biochem Mol Biol. 2017;52:74–95.

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Fujii KK, Taga Y, Takagi YK, Masuda R, Hattori S, Koide T The thermal stability of the collagen triple helix is tuned according to the environmental temperature. Int J Mol Sci [Internet]. 2022; 23:2040.

  • Myllyharju J, Kivirikko KI. Collagens, modifying enzymes and their mutations in humans, flies and worms. Trends Genet. 2004;20:33–43.

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Cao L, Zhang Z, Yuan D, Yu M, Min J Tissue engineering applications of recombinant human collagen: a review of recent progress. Front Bioeng Biotechnol. 2024;12:135846.

  • Ricard-Blum S The Collagen Family. 2011;3:a004978.

  • Shoulders MD, Raines RT. Collagen structure and stability. Annu Rev Biochem. 2009;78:929–58.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Gatseva A, Sin YY, Brezzo G, Van Agtmael T. Basement membrane collagens and disease mechanisms. Essays Biochem. 2019;63:297–312.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Zeltz C, Gullberg D. The integrin–collagen connection – a glue for tissue repair? J Cell Sci. 2016;129:653–64.

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Juskaite V, Corcoran DS, Leitinger B. Collagen induces activation of DDR1 through lateral dimer association and phosphorylation between dimers. eLife. 2017;6:e25716.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Park K, Jayadev R, Payne SG, Kenny-Ganzert IW, Chi Q, Costa DS, et al. Reciprocal discoidin domain receptor signaling strengthens integrin adhesion to connect adjacent tissues. eLife. 2023;12:RP87037.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Borza CM, Bolas G, Zhang X, Browning Monroe MB, Zhang M-Z, Meiler J, et al. The collagen receptor discoidin domain receptor 1b enhances integrin β1-mediated cell migration by interacting with talin and promoting Rac1 activation. Front Cell Develop Biol. 2022;10. 836797.

    Article 

    Google Scholar 

  • Jariwala N, Ozols M, Bell M, Bradley E, Gilmore A, Debelle L, et al. Matrikines as mediators of tissue remodelling. Adv Drug Deliv Rev. 2022;185:114240.

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Mavrogonatou E, Papadopoulou A, Pratsinis H, Kletsas D. Senescence-associated alterations in the extracellular matrix: deciphering their role in the regulation of cellular function. Am J. 2023;325:C633–C47.

    CAS 

    Google Scholar 

  • Winkler J, Abisoye-Ogunniyan A, Metcalf KJ, Werb Z. Concepts of extracellular matrix remodelling in tumour progression and metastasis. Nat Commun. 2020;11:5120.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Pickup MW, Mouw JK, Weaver VM. The extracellular matrix modulates the hallmarks of cancer. EMBO Rep. 2014;15:1243–53.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Stylianopoulos T, Munn LL, Jain RK. Reengineering the physical microenvironment of tumors to improve drug delivery and efficacy: from mathematical modeling to bench to bedside. Trends Cancer. 2018;4:292–319.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Jeanne M, Gould DB. Genotype-phenotype correlations in pathology caused by collagen type IV alpha 1 and 2 mutations. Matrix Biol. 2017;57-58:29–44.

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Butterfield RJ, Foley AR, Dastgir J, Asman S, Dunn DM, Zou Y, et al. Position of glycine substitutions in the triple helix of 61, 62, and 63 is correlated with severity and mode of inheritance in collagen VI myopathies. Hum Mutat. 2013;34:1558–67.

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Sałacińska K, Pinkier I, Rutkowska L, Chlebna-Sokół D, Jakubowska-Pietkiewicz E, Michałus I, et al. Novel mutations within collagen Alpha1(I) and Alpha2(I) ligand-binding sites, broadening the spectrum of osteogenesis imperfecta – current insights into collagen Type I Lethal Regions. Front Genet. 2021;12:692978.

  • Omar R, Lee MAW, Gonzalez-Trueba L, Thomson CR, Hansen U, Lianos S, et al. The chemical chaperone 4-phenylbutyric acid rescues molecular cell defects of COL3A1 mutations that cause vascular Ehlers Danlos syndrome. Cell Death Discov. 2025;11:200.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Mullan LA, Mularczyk EJ, Kung LH, Forouhan M, Wragg JMA, Goodacre R, et al. Increased intracellular proteolysis reduces disease severity in an ER stress–associated dwarfism. J Clin Investig. 2017;127:3861–5.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lamandé SR Collagen VI Muscle disorders: mutation types, pathogenic mechanisms and approaches to therapy. In: Halper J, editor. Progress in Heritable Soft Connective Tissue Diseases. Springer International Publishing; 2021. p. 311–23.

  • Guide SV, Gonzalez ME, Bagci IS, Agostini B, Chen H, Feeney G, et al. Trial of beremagene geperpavec (B-VEC) for dystrophic epidermolysis bullosa. N Engl J Med. 2022;387:2211–9.

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, et al. RNA-guided human genome engineering via Cas9. Science. 2013;339:823–6.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. Science. 2012;337:816–21.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Liu M, Zhang W, Xin C, Yin J, Shang Y, Ai C, et al. Global detection of DNA repair outcomes induced by CRISPR–Cas9. Nucleic Acids Res. 2021;49:8732–42.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Komor AC, Kim YB, Packer MS, Zuris JA, Liu DR. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature. 2016;533:420–4.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Anzalone AV, Randolph PB, Davis JR, Sousa AA, Koblan LW, Levy JM, et al. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature. 2019;576:149–57.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Porto EM, Komor AC, Slaymaker IM, Yeo GW. Base editing: advances and therapeutic opportunities. Nat Rev Drug Discov. 2020;19:839–59.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Woodley DT, Keene DR, Atha T, Huang Y, Ram R, Kasahara N, et al. Intradermal injection of lentiviral vectors corrects regenerated human dystrophic epidermolysis bullosa skin tissue in vivo. Mol Ther. 2004;10:318–26.

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Lwin SM, Syed F, Di WL, Kadiyirire T, Liu L, Guy A, et al. Safety and early efficacy outcomes for lentiviral fibroblast gene therapy in recessive dystrophic epidermolysis bullosa. JCI Insight. 2019;4:e126243.

  • Lim J, Grafe I, Alexander S, Lee B. Genetic causes and mechanisms of osteogenesis imperfecta. Bone. 2017;102:40–9.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Jung H, Rim YA, Park N, Nam Y, Ju JH. Restoration of osteogenesis by CRISPR/Cas9 genome editing of the mutated COL1A1 gene in osteogenesis imperfecta. J Clin Med. 2021;10:3141.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Fus-Kujawa A, Mendrek B, Bajdak-Rusinek K, Diak N, Strzelec K, Gutmajster E, et al. Gene-repaired iPS cells as novel approach for patient with osteogenesis imperfecta. Front Bioeng Biotechnol. 2023;11:1205122.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cao Y, Li L, Ren X, Mao B, Yang Y, Mi H, et al. CRISPR/Cas9 correction of a dominant cis-double-variant in COL1A1 isolated from a patient with osteogenesis imperfecta increases the osteogenic capacity of induced pluripotent stem cells. J Bone Miner Res. 2023;38:719–32.

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Yang Y-S, Sato T, Chaugule S, Ma H, Xie J, Gao G, et al. AAV-based gene editing of type 1 collagen mutation to treat osteogenesis imperfecta. Mol Ther Nucleic Acids. 2024;35:102111.

  • Malfait F, Castori M, Francomano CA, Giunta C, Kosho T, Byers PH. The Ehlers–Danlos syndromes. Nat Rev Dis Prim. 2020;6:64.

    Article 
    PubMed 

    Google Scholar 

  • Gensure RC, Mäkitie O, Barclay C, Chan C, DePalma SR, Bastepe M, et al. A novel COL1A1 mutation in infantile cortical hyperostosis (Caffey disease) expands the spectrum of collagen-related disorders. J Clin Investig. 2005;115:1250–7.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Alamowitch S, Plaisier E, Favrole P, Prost C, Chen Z, Van Agtmael T, et al. Cerebrovascular disease related to COL4A1 mutations in HANAC syndrome. Neurology. 2009;73:1873–82.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Warady BA, Agarwal R, Bangalore S, Chapman A, Levin A, Stenvinkel P, et al. Alport syndrome classification and management. Kidney Med. 2020;2:639–49.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Xie J, Wu X, Ren H, Wang W, Wang Z, Pan X, et al. COL4A3 mutations cause focal segmental glomerulosclerosis. J Mol Cell Biol. 2014;6:498–505.

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Wang YY, Rana K, Tonna S, Lin T, Sin L, Savige J. COL4A3 mutations and their clinical consequences in thin basement membrane nephropathy (TBMN)1. Kidney Int. 2004;65:786–90.

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Daga S, Donati F, Capitani K, Croci S, Tita R, Giliberti A, et al. New frontiers to cure Alport syndrome: COL4A3 and COL4A5 gene editing in podocyte-lineage cells. Eur J Hum Genet. 2020;28:480–90.

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Kashtan CE, Ding J, Garosi G, Heidet L, Massella L, Nakanishi K, et al. Alport syndrome: a unified classification of genetic disorders of collagen IV alpha345: a position paper of the Alport Syndrome Classification Working Group. Kidney Int. 2018;93:1045–51.

    Article 
    PubMed 

    Google Scholar 

  • Lampe AK, Dunn DM, von Niederhausern AC, Hamil C, Aoyagi A, Laval SH, et al. Automated genomic sequence analysis of the three collagen VI genes: applications to Ullrich congenital muscular dystrophy and Bethlem myopathy. J Med Genet. 2005;42:108.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Benati D, Cattin E, Corradi F, Ferrari T, Pedrazzoli E, Patrizi C, et al. Restored collagen VI microfilaments network in the extracellular matrix of CRISPR-edited Ullrich congenital muscular dystrophy fibroblasts. Biomolecules. 2024;14:1412.

  • López-Márquez A, Morín M, Fernández-Peñalver S, Badosa C, Hernández-Delgado A, Natera-de Benito D, et al. CRISPR/Cas9-mediated allele-specific disruption of a dominant COL6A1 pathogenic variant improves collagen VI network in patient fibroblasts. Int J Mol Sci [Internet]. 2022; 23:4410.

  • Bolduc V, Zou Y, Ko D, Bönnemann CG. siRNA-mediated Allele-specific silencing of a COL6A3 mutation in a cellular model of dominant ullrich muscular dystrophy. Mol Ther Nucleic Acids. 2014;3:e147.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Marrosu E, Ala P, Muntoni F, Zhou H. Gapmer antisense oligonucleotides suppress the mutant Allele of COL6A3 and restore functional protein in ullrich muscular dystrophy. Mol Ther Nucleic Acids. 2017;8:416–27.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Watanabe M, Natsuga K, Shinkuma S, Shimizu H. Epidermal aspects of type VII collagen: Implications for dystrophic epidermolysis bullosa and epidermolysis bullosa acquisita. J Dermatol. 2018;45:515–21.

    Article 
    PubMed 

    Google Scholar 

  • Nyström A, Bruckner-Tuderman L, Kiritsi D Dystrophic epidermolysis bullosa: secondary disease mechanisms and disease modifiers. Front Genet. 2021;12:737272.

  • Siprashvili Z, Nguyen NT, Gorell ES, Loutit K, Khuu P, Furukawa LK, et al. Safety and wound outcomes following genetically corrected autologous epidermal grafts in patients with recessive dystrophic epidermolysis bullosa. JAMA. 2016;316:1808–17.

    Article 
    PubMed 

    Google Scholar 

  • So JY, Nazaroff J, Iwummadu CV, Harris N, Gorell ES, Fulchand S, et al. Long-term safety and efficacy of gene-corrected autologous keratinocyte grafts for recessive dystrophic epidermolysis bullosa. Orphanet J Rare Dis. 2022;17:377.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bonafont J, Mencía A, Chacón-Solano E, Srifa W, Vaidyanathan S, Romano R, et al. Correction of recessive dystrophic epidermolysis bullosa by homology-directed repair-mediated genome editing. Mol Ther. 2021;29:2008–18.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Izmiryan A, Ganier C, Bovolenta M, Schmitt A, Mavilio F, Hovnanian A. Ex Vivo COL7A1 correction for recessive dystrophic epidermolysis bullosa using CRISPR/Cas9 and homology-directed repair. Mol Ther Nucleic Acids. 2018;12:554–67.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hong SA, Kim SE, Lee AY, Hwang GH, Kim JH, Iwata H, et al. Therapeutic base editing and prime editing of COL7A1 mutations in recessive dystrophic epidermolysis bullosa. Mol Ther. 2022;30:2664–79.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Naso G, Gkazi SA, Georgiadis C, Jayarajan V, Jacków J, Fleck R, et al. Cytosine deaminase base editing to restore COL7A1 in dystrophic epidermolysis bullosa human: murine skin model. JID Innov. 2023;3:100191.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sheriff A, Guri I, Zebrowska P, Llopis-Hernandez V, Brooks IR, Tekkela S, et al. ABE8e adenine base editor precisely and efficiently corrects a recurrent COL7A1 nonsense mutation. Sci Rep. 2022;12:19643.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Mustfa SA, Dimitrievska M, Wang C, Gu C, Sun N, Romańczuk K, et al. Porous silicon nanoneedles efficiently deliver adenine base editor to correct a recurrent pathogenic COL7A1 variant in recessive dystrophic epidermolysis bullosa. Adv Mater. 2025;37:2414728.

  • Petković I, Bischof J, Kocher T, March OP, Liemberger B, Hainzl S, et al. COL17A1 editing via homology-directed repair in junctional epidermolysis bullosa. Frontiers in Medicine. 2022;9:976604.

  • Carusillo A, Haider S, Schäfer R, Rhiel M, Türk D, Chmielewski Kay O, et al. A novel Cas9 fusion protein promotes targeted genome editing with reduced mutational burden in primary human cells. Nucleic Acids Res. 2023;51:4660–73.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Nambiar TS, Billon P, Diedenhofen G, Hayward SB, Taglialatela A, Cai K, et al. Stimulation of CRISPR-mediated homology-directed repair by an engineered RAD18 variant. Nat Commun. 2019;10:3395.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Antoniou P, Miccio A, Brusson M Base and prime editing technologies for blood disorders. Front Genome Edit. 2021;3:618406.

  • Davis JR, Wang X, Witte IP, Huang TP, Levy JM, Raguram A, et al. Efficient in vivo base editing via single adeno-associated viruses with size-optimized genomes encoding compact adenine base editors. Nat Biomed Eng. 2022;6:1272–83.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Hu Z, Wang Y, Liu Q, Qiu Y, Zhong Z, Li K, et al. Improving the precision of base editing by bubble hairpin single guide RNA. mBio. 2021;12:e00342.

  • Cócera-Ortega L and Wilders R and Kamps SC, Fabrizi B, Huber I, van der Made I et al. shRNAs targeting a common KCNQ1 variant could alleviate long-QT1 disease severity by inhibiting a mutant allele. Int J Mol Sci. 2022;23:4053.

  • Wang D, Tai PWL, Gao G. Adeno-associated virus vector as a platform for gene therapy delivery. Nat Rev Drug Discov. 2019;18:358–78.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Hunt JMT, Samson CA, Rand AD, Sheppard HM. Unintended CRISPR-Cas9 editing outcomes: a review of the detection and prevalence of structural variants generated by gene-editing in human cells. Hum Genet. 2023;142:705–20.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Issa SS, Shaimardanova AA, Solovyeva VV, Rizvanov AA Various AAV Serotypes and their applications in gene therapy: an overview. Cells [Internet]. 2023; 12:785.

  • Barbon E, Kawecki C, Marmier S, Sakkal A, Collaud F, Charles S, et al. Development of a dual hybrid AAV vector for endothelial-targeted expression of von Willebrand factor. Gene Ther. 2023;30:245–54.

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Fredman G, Kamaly N, Spolitu S, Milton J, Ghorpade D, Chiasson R, et al. Targeted nanoparticles containing the proresolving peptide Ac2-26 protect against advanced atherosclerosis in hypercholesterolemic mice. Sci Transl Med. 2015;7:275ra20–ra20.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Zhang S, Shen J, Li D, Cheng Y. Strategies in the delivery of Cas9 ribonucleoprotein for CRISPR/Cas9 genome editing. Theranostics. 2021;11:614–48.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Berthault C, Gaucher S, Gouin O, Schmitt A, Chen M, Woodley D, et al. J Investig Dermatol. 2024;144:1322–33.

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Wang X, Wang X, Li Y, A S, Qiu B, Bushmalyova A, et al. CRISPR-Cas9-based non-viral gene editing therapy for topical treatment of recessive dystrophic epidermolysis bullosa. Mol Ther Methods Clin Develop. 2023;31:101304.

  • Lindley SR, Subbaiah KCV, Priyanka F, Poosala P, Ma Y, Jalinous L, et al. Ribozyme-activated mRNA trans-ligation enables large gene delivery to treat muscular dystrophies. Science. 2024;386:762–7.

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Yarnall MTN, Ioannidi EI, Schmitt-Ulms C, Krajeski RN, Lim J, Villiger L, et al. Drag-and-drop genome insertion of large sequences without double-strand DNA cleavage using CRISPR-directed integrases. Nat Biotechnol. 2023;41:500–12.

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Bax BD, Sutormin D, McDonald NQ, Burley GA, Shelkovnikova T Oligonucleotide-Recognizing topoisomerase inhibitors (OTIs): precision gene editors for neurodegenerative diseases? Int J Mol Sci. 2022;23:11541.

  • Woolf TM, Chase JM, Stinchcomb DT. Toward the therapeutic editing of mutated RNA sequences. PNAS. 1995;92:8298–302.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Fukuda M, Umeno H, Nose K, Nishitarumizu A, Noguchi R, Nakagawa H. Construction of a guide-RNA for site-directed RNA mutagenesis utilising intracellular A-to-I RNA editing. Sci Rep. 2017;7:41478.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Montiel-Gonzalez MF, Vallecillo-Viejo I, Yudowski GA, Rosenthal JJC. Correction of mutations within the cystic fibrosis transmembrane conductance regulator by site-directed RNA editing. Proc Natl Acad Sci USA. 2013;110:18285–90.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Pfeiffer LS, Stafforst T. Precision RNA base editing with engineered and endogenous effectors. Nat Biotechnol. 2023;41:1526–42.

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Merkle T, Merz S, Reautschnig P, Blaha A, Li Q, Vogel P, et al. Precise RNA editing by recruiting endogenous ADARs with antisense oligonucleotides. Nat Biotechnol. 2019;37:133–8.

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Qu L, Yi Z, Zhu S, Wang C, Cao Z, Zhou Z, et al. Programmable RNA editing by recruiting endogenous ADAR using engineered RNAs. Nat Biotechnol. 2019;37:1059–69.

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Reautschnig P, Fruhner C, Wahn N, Wiegand CP, Kragness S, Yung JF, et al. Precise in vivo RNA base editing with a wobble-enhanced circular CLUSTER guide RNA. Nat Biotechnol. 2024;43:545–57.

  • Manfredsson FP, Rising AC, Mandel RJ. AAV9: a potential blood-brain barrier buster. Mol Ther. 2009;17:403–5.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Riedmayr LM, Hinrichsmeyer KS, Thalhammer SB, Mittas DM, Karguth N, Otify DY, et al. mRNA trans-splicing dual AAV vectors for (epi)genome editing and gene therapy. Nat Commun. 2023;14:6578.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Infante Lara L, Fenner S, Ratcliffe S, Isidro-Llobet A, Hann M, Bax B, et al. Coupling the core of the anticancer drug etoposide to an oligonucleotide induces topoisomerase II-mediated cleavage at specific DNA sequences. Nucleic Acids Res. 2018;46:2218–33.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Barat-Houari M, Sarrabay G, Gatinois V, Fabre A, Dumont B, Genevieve D, et al. Mutation update for COL2A1 gene variants associated with type II collagenopathies. Hum Mutat. 2016;37:7–15.

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Van Camp G, Snoeckx RL, Hilgert N, van den Ende J, Fukuoka H, Wagatsuma M, et al. A new autosomal recessive form of stickler syndrome is caused by a mutation in the COL9A1 Gene. Am J Hum Genet. 2006;79:449–57.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Omar R, Malfait F, Van Agtmael T. Four decades in the making: collagen III and mechanisms of vascular Ehlers Danlos syndrome. Matrix Biol. 2021;12:100090.

    Article 
    CAS 

    Google Scholar 

  • Zhou X, Wang J, Mao J, Ye Q Clinical manifestations of alport syndrome-diffuse leiomyomatosis patients with contiguous gene deletions in COL4A6 and COL4A5. Front Med. 2021;8:766224.

  • Liu X, Zheng T, Zhao C, Zhang Y, Liu H, Wang L, et al. Genetic mutations and molecular mechanisms of Fuchs endothelial corneal dystrophy. Eye Vis. 2021;8:24.

    Article 
    CAS 

    Google Scholar 

  • Lamandé SR, Bateman JF. Genetic disorders of the extracellular matrix. Anat Rec. 2020;303:1527–42.

    Article 

    Google Scholar 

  • Nixon TRW, Alexander P, Richards A, McNinch A, Bearcroft PWP, Cobben J, et al. Homozygous Type IX collagen variants (COL9A1, COL9A2, and COL9A3) causing recessive Stickler syndrome—expanding the phenotype. Am J Med Genet Part A. 2019;179:1498–506.

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Dennis EP, Greenhalgh-Maychell PL, Briggs MD. Multiple epiphyseal dysplasia and related disorders: Molecular genetics, disease mechanisms, and therapeutic avenues. Develop Dyn. 2021;250:345–59.

    Article 
    CAS 

    Google Scholar 

  • Czarny-Ratajczak M, Lohiniva J, Rogala P, Kozlowski K, Perälä M, Carter L, et al. A mutation in COL9A1 causes multiple epiphyseal dysplasia: further evidence for locus heterogeneity. Am J Hum Genet. 2001;69:969–80.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Al Kaissi A, Ghachem MB, Nabil NM, Kenis V, Melchenko E, Morenko E, et al. Schmid’s type of metaphyseal chondrodysplasia: diagnosis and management. Orthop Surg. 2018;10:241–6.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • El Sherif R, Saito Y, Hussein RS, Izu Y, Koch M, Noguchi S, et al. A novel homozygous nonsense variant in COL12A1 causes myopathic Ehlers-Danlos syndrome: a case report and literature review. Neuropathol Appl Neurobiol. 2024;50:e13004.

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Rodríguez Cruz PM, Cossins J, de Paula Estephan E, Munell F, Selby K, Hirano M, et al. The clinical spectrum of the congenital myasthenic syndrome resulting from COL13A1 mutations. Brain. 2019;142:1547–60.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jonsson F, Byström B, Davidson AE, Backman LJ, Kellgren TG, Tuft SJ, et al. Mutations in collagen, type XVII, Alpha 1 (COL17A1) cause epithelial recurrent erosion dystrophy (ERED). Hum Mutat. 2015;36:463–73.

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Hull S, Arno G, Ku CA, Ge Z, Waseem N, Chandra A, et al. Molecular and clinical findings in patients with Knobloch syndrome. JAMA Ophthalmol. 2016;134:753–62.

    Article 
    PubMed 

    Google Scholar 

  • Natera-de Benito D, Jurgens JA, Yeung A, Zaharieva IT, Manzur A, DiTroia SP, et al. Recessive variants in COL25A1 gene as novel cause of arthrogryposis multiplex congenita with ocular congenital cranial dysinnervation disorder. Hum Mutat. 2022;43:487–98.

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Evie K, Athina T, Nayia N, Angelos A, Ioannis P, Elisavet E, et al. First reported case of Steel syndrome in the European population: A novel homozygous mutation in COL27A1 and review of the literature. Eur J Med Genet. 2020;63:103939.

    Article 

    Google Scholar 

  • Holmes DF, Lu Y, Starborg T, Kadler KE Chapter Three – Collagen Fibril Assembly and Function. In: Litscher ES, Wassarman PM, editors. Curr Top Develop Biol. 130: Academic Press; 2018. p. 107–42.

  • link

    Leave a Reply

    Your email address will not be published. Required fields are marked *